

"LASERS IN CONSERVATION; ANALYSIS AND DIAGNOSIS WITH LASER INDUCED FLUORESCENCE AND LASER INDUCED BREAKDOWN SPECTROSCOPY"

Marta Castillejo

Rocasolano Institute of Physical Chemistry, CSIC, Madrid, Spain

Curso de Conservación del Patrimonio II, Sevilla, Marzo 2007

Laser analytical techniques in Art/ Archaeology

- Laser Induced Fluorescence (LIF)
- Laser Induced Breakdown Spectroscopy (LIBS)
- Raman Spectroscopy/Microscopy
- Laser ablation TOF-MS
- Laser ablation ICP-MS

Laser Induced Fluorescence LIF

Basic principles

Main features

Versatile, non-destructive,
Applicable in situ,
Sensitive, capable of detecting organic
and inorganic materials,
Microscopic and imaging implementation,
Performed *in situ* and in remote sensing

Instrumentation

Excitation with continuous or pulsed laser sources, Detection system

LIF in Art and Archaeology

Pigments
Binding media and varnishes
Biological contaminants

http://www.raphael-medieval.org

http://www.diamondsourceva.com/Educati

CONSULO SUPERIOR DE INVESTIGACIONES CENTIFICAS

LIF Basic principles

- Molecular emission spectroscopic technique: molecules that absorb UV light and enter into excited electronic states will eventually return to the ground electronic state. They can do this 'radiatively' or 'non-radiatively'.
- Molecules that return via radiative means (i.e. by emission of light) are said to 'fluoresce'.
- Fluorescence is effectively the opposite of absorption.
- Provides information directly related to molecular structure of materials on the illuminated substrate.
- Fluorescence is a 3-step process...

biochem.uiowa.edu/courses/99241

LIF step 1 Molecule starts in the ground vibrational state of the ground electronic state (S_o) Absorbs UV light and undergoes a 'vertical transition', this happens very fast (10⁻¹⁵s) Enters an excited electronic state will almost always be a 'singlet' ('S'): the excited electron retains its spin.

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

LIF: Fluorescence intensities

- Similarly to absorption, the molecule can return to a range of different vibrational energy levels
- Each will result in emission of a different wavelength of light
- ♣ The Franck-Condon principle allow us to understand the relative intensities of fluorescence emissions (as with absorption bands...)

chem.ulowa.edu/courses/9924

LASER INDUCED BREAKDOWN SPECTROSCOPY AND FLUORESCENCE

- LIF and LIBS are advanced tools for analysis and diagnosis in conservation.
- LIF is non-destructive and provides information on the molecular composition.
- LIBS is micro destructive, tells about elemental constituents. Possible stratigraphic analysis.
- Developments/ needs:
 - Incorporation of advanced laser analytical and diagnosis techniques to the scenario of artwork conservation (fs, multipulse, remote LIBS).
 - Cheap, compact, integrated systems for in situ, remote analysis and diagnostics.

Acknowledgements

M. Oujja, E. Rebollar, S. Gaspard, M. Walczak Institute of Physical Chemistry, CSIC, Madrid, Spain

Funding:

CSIC, CAM (Madrid), MEC-Spain, EU-EST MC "Cultural Heritage", ESF-COST G7.